MONOTERPENOIDS ---- VI^a

ON THE OPTICAL PURITY OF (+)-CAR-3-ENE FROM PINUS ROXBURGHII, AND THE SOURCE OF RACEMIZATION OF (-)-MENTHOL DERIVED THEREFROM^b

A.N. Misra, C R. Soman^d and Sukh Dev⁺

Malti-Chem Research Centre, Nandesari, Vadodara, India

(Received in UK 25 August 1988)

Abstract — It is shown that (+)-car-3-ene occurring in the Oleoresin from *Pinus roxburghii* is optically pure. It is also demonstrated that in the production of (-)-menthol from (+)-car-3-ene by the MRC process, partial racemization of (-)-menthol has its origin at the stage of (+)-isoterpinolene.

In the production of (-)-menthol (2) from (+)-car-3-ene (1) by MRC Process¹, (+)-isolimonene (3) and (+)-isoterpinolene (4) are important intermediates. Since, (-)-menthol produced by this process is racemized to the extent of some 10-12%, the present investigation was undertaken to determine the source of this racemization.

Optical Purity of (+)-Car-3-ene

Many monoterpenes occur in nature partially or fully racemized²; an extreme case is that of α -pinene which seldom occurs in nature in optically pure form.³ Car-3-ene occurs in nature in (+),(-), and (+)-forms.^{2c} It was important, in the first instance, to determine the optical purity of (+)-car-3-ene as isolated from <u>Pinus roxburghii</u> Sarg. syn. <u>P. longifolia</u> Roxb.

A Part V : Tetrahedron 41, 3083 (1985) b MRC Communication No. 53

C Present address: Gujarat Alkalies and Chemicals Ltd., Baroda, India

d Present address: Sudarshan Chemical Industries Ltd., Poona 411 001, India

No.	Source	$\{\alpha\}_{D}$ (neat, t ^o)
1	Pinus silvestris (Poland) ⁴	+ 17.1° (20°)
2	P. silvestris (Sweden) ⁵	+ 17.6 ⁰ (25 ⁰)
3	P. ponderosa ⁶	+ 18.1° (20°, ?)
4	P. roxburghii ⁷	+ 17.32 ⁰ (20 ⁰)
5	P. roxburghii (Our sample)	+ 17.2 \pm 0.2° (25°)

Table 1. Comparison of $\{\alpha\}_{D}$ of (+)-Car-3-ene of different sources

A reference to Table 1 shows that (+)-car-3-ene from diverse sources has a spread of $\{\alpha\}_D$ values, which may be meaningful as far as optical purity is concerned, or simply may be a reflection of ultra-trace impurities or subjective experimental error. This situation was clarified as follows.

(+)-Car-3-ene from Pinus roxburghii was epoxidised (ACOOH) to furnish the known⁸ (+)-3 α , 4 α -epoxycarane (5), which on LAH reduction gave in over 90% yield the tertiary alcohol <u>6</u> as per the reported procedure.⁹ A part of this product was carefully fractionated to get 100% GLC pure product and its specific rotation noted { $\{\alpha\}_D^{30^\circ} + 23.6^\circ$ (neat)}. Another portion was converted into its crystalline *p*-nitrobenzoate and crystallized to constant m.p. (m.p. 113-114°). The crystaline ester was saponified and the product fractionated to get 100% GLC pure cut and its optical rotation determined { $\{\alpha\}_D^{30} + 23.8^\circ$ (neat)}. Since the two values are, within experimental error, identical, it follows that the starting carene (ex. *P. roxburghii*) is optically pure.

Racemization of (+)-Isoterpinolene

In the MRC process for the production of (-)-menthol, (+)-car-3-ene (<u>1</u>) is first equilibrated with its Δ^2 -isomer (<u>7</u>) under basic conditions.¹⁰ Since (+)-car-3-ene separated from this equilibrium mixture (<u>1</u>:<u>7</u>:: 3:2) has its { α }_D unchanged, there cannot be any racemization at this stage. This was anticipated. At the next stage, thermal reorganization (<u>8</u>) of (+)-car-2-ene proceeds by a symmetry-allowed process to generate (+)-isolimonene (<u>3</u>).¹¹ No racemization is expected in this process. To establish that no overlap of any catalytic pathway with the sigmatropic rearrangement (8) occurs, thermal isomerization of pure (+)-car-2-ene was investigated at various temperatures (240-400°) in a variety of reactors (glass tubular reactor packed with glass helices or SS wire-mesh, sealed glass ampule at 240-260°, or SS autoclave at 240-260°). The specific rotation of (+)-trans-isolimonene (3), thus obtained, was the same $\{\{\alpha\}_D^{25°}+210^{\circ}\pm1^{\circ}(neat)\}$ for all the samples. This reinforced the contention that there can be no racemization at this stage.

In the next step, (+)-isolimonene (3) is isomerized to (+)-isoterpinolene (4). This is achieved by exposure of 3 to deactivated high-surface-sodium-onalumina.¹² Isomerization is essentially quantitative, and the product contains, besides 4 (90), its 3,8-isomer (9; 7) and *p*-cymene (3). GLC pure isoterpinolene (4), thus obtained (from pure isolimonene), had { α }²⁵⁰_D + 66.7^o(neat). This value is different from two values reported in the literature : { α }²⁰_D + 63^o (CHCl₃)¹³, + 49.1^o(neat)¹⁴. This situation was clarified as follows:

GLC pure isoterpinolene on ozonolysis followed by CrO_3 oxidation¹⁵ furnished, as the main product, α -methylglutaric acid, which was repeatedly crystallized to get pure (-)- α -methylglutaric acid {10, R=H; m.o. 86-88°, { α }_D^{25°}-24.71°(EtOH)}. Esterification (CH₂N₂) furnished optically pure ester{10, R=Me, { α }_D^{25°}-24.85° (neat)}. Another portion of ozonolysis-oxidation product was esterified (CH₂N₂) and then precision-fractionated to get GLC pure α -methylglutarate. This product had { α }_D²⁵ -22.5°(neat). From this it can be inferred that isoterpinolene is racemized to the extent of 10%. This then establishes the source of racemization in the synthesis of (-)-menthol from (+)-car-3-ene. From this it also follows that optically pure (+)-isoterpinolene should have { α }_D²⁵ + 74.1° (neat). 6944

Racemization of isoterpinolene, during its preparation from isolimonene, can occur through two possible pathways depicted in Fig. 1. In the present context, pathway 1 is considered unimportant, since generation of <u>13</u> should be far more facile in comparison to that of ion <u>11</u>, more so because isomerization of isolimonene (<u>3</u>) to isoterpinolene (<u>4</u>) should be a kinetically-controlled process.¹⁶ Pathway 2 envisages racemization of isoterpinolene <u>via</u> its 3,8-isomer (<u>9</u>). This implies greater racemization of 3,8-isomer as compared to that of isoterpinolene,

Fig. 1. Possible modes for racemization of isoterpinolene

since in isomerization of 3,8-isomer to isoterpinolene (4) the large excess of 9 will compete with small proportions of 15. To check this point, the 3,8-isomer formed as a co-product during isomerization of isolimonene to isoterpinolene was isolated in GLC pure state and was found to have $\{\alpha\}_D^{25} + 128.9^{\circ}(CHCl_3)$. The maximum specific rotation reported for (+)-mentha-3,8-diene (9) in the literature¹³ is + 159.0° (CHCl_3), from which it follows that our sample of 3,8-isomer must have been racemized to the extent of some 19%. This, then supports the contention that during production of (+)-isoterpinolene from (+)-isolimonene, partial racemization had occurred via pathway 2. This also implies that racemization of 9 is a slower process than its isomerization to 4. This may be expected when one compares the structure of ions 14 and 13.

EXPERIMENTAL

M.ps and b.ps are uncorrected. Light petroleum refers to fraction b.p. 60- 80° . All solvent extracts were finally washed with brine and dried (Na₂SO₄).

Precision fractionation was carried out using Adiabatic Annular Teflon Spinning-band Distillation Unit, supplied by Nester/Faust Manufacturing Corporation, Newark, USA.

Following instruments were used for spectral/analytical data: Schmidt + Haensch electronic polarimeter model Polatronic 1; Perkin-Elmer model 267 Infrared Spectrophotometer; Perkin-Elmer model R32 (90 MHz) NMR spectrometer; Hewlett-Packard 5712A and 7624A Gas Chromatographs (Al columns, 180 cm x 0.6 cm; 10% Carbowax 20M on 60-80 mesh Chromosorb W; carrier gas, H₂).

(+)-Car-3-ene used in the following experiments was 100% GLC pure, having $\{\alpha\}_D^{25^\circ}$ in the range + 16.98° to + 17.46° (neat).

(+)-cis-Caran-3-ol (<u>6</u>)

cis-Caran-3,4-epoxide^{8C} (19.0 g) in dry ether (100 ml) was reduced with LAH (5.0g) in ether (70 ml) as reported in an earlier procedure ⁹, to get crude <u>6</u> (18.0g), b.p. $90-95^{\circ}/20$ mm (GLC purity, 88%). This was precision fractionated to get 100% (GLC) pure cis-caran-3-ol (<u>6</u>): $d_{4}^{30}0.9754$, n_{D}^{35} 1.4705, $\{\alpha\}_{D}^{30}$ + 23.6° (neat).

A mixture of crude LAH reduction product (16.0 g), p-nitrobenzoyl chloride (27.5 g) and dry pyridine (40 ml) was stirred at 100° for 2 hr, and worked up to get the crude ester (31.4 g, m.p. $102-105^{\circ}$). This was repeatedly crystallized from light petroleum to a constant m.p.(113-114°; 24.6g). IR (CCl₄): 1725, 1300, 1255, 1115 and 1105 cm⁻¹. ¹H-NMR (CCl₄): δ Me-C (3H, s, 0.97; 3H, s, 1.01; 3H, s, 1.55 ppm), Ar-H (4H, ABq, 8.16 ppm).

The above pure ester (24.0 g) was saponified with methanolic KOH to get <u>6</u> (12.0g) of 98% GLC purity. This was carefully fractionated to furnish caranol of 100% GLC purity: d_A^{30} 0.9786, n_D^{35} 1.4710, $\{\alpha\}_D^{30}$ + 23.8° (neat).

$(-)-\alpha$ -Methylglutaric acid from (+)-isoterpinolene

(+)-Isoterpinolene {20g; GLC purity 100%, n_D^{25} 1.5028, d_4^{25} 0.8494, { α }_D + 66.7° (neat) } in acetone (100 ml) was exposed to ozonized oxygen (3.23g O₃ per hr; 2 1 O₃ + O₂/min) at -10° to -15° for 4.5 hr (+ve excess O₃ test). The reaction mixture was diluted with cold (-5°) acetone (200 ml), and oxidized by Jones' reagent (stock soln: CrO₃ 133.5g, conc H₂SO₄ 115 ml and H₂O 200 ml; 60 ml, introduced dropwise with slow stirring and cooling), while maintaining the reaction temp at $10-20^{\circ}$. The reaction mixture was worked up in the usual manner to get an acid fraction as a viscous material (17.7 g). Several batches of isoterpinolene were ozonized-oxidized in this manner.

The crude acid (29.1 g) was esterified with CH_2N_2 ($^{18.0g}$, 500 ml ether) to get a distilled product (b.p. 75^o/lmm, 19.5g) of 88% GLC purity. This was fractionated to furnish 100% GLC pure ester: $n_D^{25^o}$ 1.4239, $d_4^{25^o}$ 1.0535, $\{\alpha\}_D^{25^o}$ -22.5^o(neat).

Another batch of crude acid (30.6 g) was seeded and kept at 5° for 24 hr, and the crystallized brownish white material (12.9g, m.p. 67-71°) collected. This on four crystallizations from benzene gave a product (9.9g, m.p. 81-83°), which was repeatedly recrystallized from ether + light petroleum to constant m.p. to get pure $\underline{10}$ (R=H; 7.6g), m.p. 86-88°, $\{\alpha\}_{D}^{25°}$ -24.71°(EtOH, \underline{c} 5%). {Lit.¹⁷, m.p. 82.5-83°, $\{\alpha\}_{D}^{25°}$ -21.7°(EtOH)}. Pure acid, thus obtained, was esterified (CH₂N₂) to get 100% GLC pure ester ($\underline{10}$, R = Me), $n_{D}^{25°}$ 1.4238, $d_{4}^{25°}$ 1.0500, $\{\alpha\}_{D}^{25°}$ -24.85°(neat).

REFERENCES AND NOTES

- (a) Sukh Dev, Proceedings of 11th IUPAC International Symposium on Chemistry of Natural Products, Vol. 4, part 1, p. 433, Bulgarian Academy of Sciences, Golden Sands, 1978; (b) Sukh Dev, Proceedings of International Symposium on Medicinal and Aromatic Plants, p. 77, Central Institute of Medicinal and Aromatic Plants, Lucknow, 1983; (c) P.Z. Bedoukian, Perfumer and Flavorist 8(2), 5 (1983).
- ² (a) H. Erdtman in Chemical Plant Taxonomy (Editor: T. Swain), p. 93, Academic Press, New York, 1963; (b) V. Flouvier, Phytochemistry 5, 955 (1966); (c) Sukh Dev, A.P.S. Narula and J.S. Yadav, <u>CRC Handbook of Terpenoids</u>, Vol. II, CRC Press, Boca Raton, Florida, 1982.
- ³ D.V. Banthorpe, B.V. Charlwood, and M.J.O. Francis, <u>Chem. Rev.</u> 72, 126 (1972).
- ⁴ V.Herout,Coll. Czech. Chem. Comm. <u>15</u>, 381 (1950).
- ⁵ G. Vidmark, Acta Chem. Scand. 9, 925 (1955).
- ⁶ R.T. O'Connor and L.A. Goldblatt, <u>Analyt. Chem</u>. <u>26</u>, 1726 (1954).
- ⁷ Y.-R. Naves, <u>Bull. Soc. Chim. Fr.</u> 554 (1959).
- 8 (a) B.A. Arbuzov and B.M. Mikhailov, J. Prakt. Chem. 127, 1 (1930); (b) P.J. Kropp, J. Am. Chem. Soc. 88, 4926 (1966); (c) V.S. Joshi, N.P. Damodaran and Sukh Dev, <u>Tetrahedron</u> 24, 5817 (1968).
- ⁹ K. Gollnick, S. Schroeter, G. Ohloff, G. Schade, and G.O. Schenck, <u>Liebig's Ann.</u> 687, 14 (1965).
- (a) G. Ohloff, K.H. Schulte-Elte and W. Giersch, <u>Helv. Chim. Acta</u> 48, 1665(1965);
 (b) W. Cocker, P.V.R. Shannon and P.A. Staniland, <u>J. Chem. Soc. (C)</u> 41, (1966);
 (c) S.P. Acharya and H.C. Brown, <u>J. Am. Chem. Soc.</u> 89, 1925 (1967).
- 11 (a) G. Ohloff, Tetrahedron Lett. 3795 (1965); (b) K. Gollnick and G. Schade, Tetrahedron 22, 123 (1966).
- 12 A.N. Misra, M.R. Sarma, R. Soman and Sukh Dev, Indian Patent 146086 (1979).
- ¹³ J.H. Brewster and H.O. Bayer, J. Org. Chem. 29, 116 (1964).
- 14 H. Horiuti, H. Otuki and O. Okuda, Bull. Chem. Soc. Japan 14, 501 (1939).
- ¹⁵ A.S. Narula and Sukh Dev, Tetrahedron Lett. 1733 (1969).
- 16 Under thermodynamic control the major product is p-mentha-1,3-diene, rather than isoterpinolene: A. Ferro and Y.-R. Naves, <u>Helv. Chim. Acta</u> <u>57</u>, 1141 (1974).
- ¹⁷ E. Berner and R. Leonardsen, Liebig's Ann. <u>538</u>, 1 (1939).

6946