MONOTERPENOIDS - VIA

ON THE OPTICAL PURITY OF (+)-CAR-3-ENE FROM PINUS ROXBURGHII, AND THE SOURCE OF RACEMIZATION OF (-)-MENTHOL DERIVED THEREFROM^D

A.N. Misra, CR. Somand and Sukh Dev⁺

Malti-Chem Research Centre, Nandesari, Vadodara, India

(Received in UK 25 August 1988)

- It is shown that (+)-car-3-ene occurring in the Abstract oleoresin from Pinus roxburghii is optically pure. It is also demonstrated that in the production of (-)-menthol from
(+)-car-3-ene by the MRC process, partial racemization of (-)-menthol has its origin at the stage of (+)-isoterpinolene.

In the production of (-)-menthol (2) from (+)-car-3-ene (1) by MRC Process¹. $(+)$ -isolimonene (3) and (+)-isoterpinolene (4) are important intermediates. Since, (-)-menthol produced by this process is racemized to the extent of some 10-12%, the present investigation was undertaken to determine the source of this racemization.

Optical Purity of (+)-Car-3-ene

Many monoterpenes occur in nature partially or fully racemized²; an extreme case is that of α -pinene which seldom occurs in nature in optically pure form.³ Car-3-ene occurs in nature in $(+)$, $(-)$, and (\pm) -forms.^{2c} It was important, in the first instance, to determine the optical purity of (+)-car-3-ene as isolated from Pinus rozburghii Sarg. syn. P. longifolia Roxb.

a Part V : Tetrahedron 41,
b MRC Communication No. 63 3083 (1985)

c. Present address: Gujarat Alkalies and Chemicals Ltd., Baroda, India

d Present address: Sudarshan Chemical Industries Ltd., Poona 411 001, India

No.	Source	$\{a\}_{\mathsf{D}}$ (neat, t^{O})
	1 Pinus silvestris (Poland) ⁴	$+ 17.1^{\circ}$ (20 ^o)
	2 P. silvestris (Sweden) ⁵	$+ 17.6^{\circ}$ (25 ^o)
	3 $P.$ ponderosa ⁶	$+18.1^{\circ}$ (20 [°] , ?)
	4 P. roxburghii ⁷	$+ 17.32^{\circ}$ (20 ^o)
	5 P. roxburghii (our sample)	$+ 17.2 + 0.2^{\circ}$ (25 ^o)

Table 1. Comparison of $\{a\}_{p}$ of $(+)$ -Car-3-ene of different sources

A reference to Table 1 shows that (+)-car-3-ene from diverse sources has a spread of ${(\alpha)}_D$ values, which may be meaningful as far as optical purity is concerned, or simply may be a reflection of ultra-trace impurities or subjective experimental error. This situation was clarified as follows.

(+)-Car-3-ene from *Pinus roxburghif* was epoxidised (ACCQH)to furnish the known⁸ (+)-3a,4a-epoxycarane (5), which on LAH reduction gave in over 90% yield the tertiary alcohol 6 as per the reported procedure.⁹ A part of this product was carefully fractionated to get 100% GLC pure product and its specific rotation noted $({\alpha})_n^{300}$ + 23.6^o (neat)). Another portion was converted into its crystalline p-nitrobenzoate and crystallized to constant m.p. $(m,p, 113-114^{\circ})$. The crystaline ester was saponified and the product fractionated to get 100% GLC pure cut and its optical rotation determined $\{(\alpha)^{30}_{n}$ + 23.8[°] (neat)). Since the two values are, within experimental error, identical, it follows that the starting carene (ex. *P. roxburghfi) is* optically pure.

Racemization of (+)-Isoterpinolene

In the MRC process for the production of $(-)$ -menthol, $(+)$ -car-3-ene (1) is first equilibrated with its Δ^2 -isomer (7) under basic conditions.¹⁰ Since (+)-car-3-ene separated from this equilibrium mixture (1:7: 3:2) has its $\{\alpha\}_n$ unchanged, there cannot be any racemization at this stage. This was anticipated. At the next stage, thermal reorganization (S) of (+)-car-2-ene proceeds by a symmetry-allowed process to generate $(+)$ -isolimonene (3).¹¹ No racemization is

expected in this process. To establish that no overlap of any catalytic pathway with the sigmatropic rearrangement (8) occurs, thermal isomerization of pure (+)-car-2-ene was investigated at various temperatures (240-400°) in a variety of reactors (glass tubular reactor packed with glass helices or SS wire-mesh, sealed glass ampule at 240-260°, or SS autoclave at 240-260°). The specific rotation of (+)-trans-isolimonene (3), thus obtained, was the same $({\alpha})^{250}_{0}$ + 210⁰ + 1⁰ (neat)) for all the samples. This reinforced the contention that there can be no racemization at this stage.

In the next step, $(+)$ -isolimonene (3) is isomerized to $(+)$ -isoterpinolene (4) . This is achieved by exposure of 3 to deactivated high-surface-sodium-onalumina.¹² Isomerization is essentially quantitative, and the product contains, besides $\frac{4}{3}$ (~90%), its 3,8-isomer (9; ~7%) and p-cymene (~3%). GLC pure isoterpinolene (4), thus obtained (from pure isolimonene), had $\{\alpha\}_{n}^{250}$ + 66.7⁰(neat). This value is different from two values reported in the literature : $\{\alpha\}_{n}^{20}$ + 63° $(CHC1₃)¹³$, + 49.1° (neat)¹⁴. This situation was clarified as follows:

GLC pure isoterpinolene on ozonolysis followed by CrO_3 oxidation¹⁵ furnished, as the main product, a-methylglutaric acid, which was repeatedly crystallized to get pure (-)-a-methylglutaric acid $\{10, R=R; m.o. 86-88^{\circ}, \{\alpha\}_{D}^{25^{\circ}}-24.71^{\circ}(\text{EtoH})\}.$ Esterification (CH₂N₂) furnished optically pure ester $\{10, R=Me\}$, $\{\alpha\}_{D}^{250}$ -24.85⁰ (neat) }. Another portion of ozonolysis-oxidation product was esterified (CH_2N_2) and then precision-fractionated to get GLC pure a-methylglutarate. This product had $\{\alpha\}_{D}^{25}$ -22.5^O(neat). From this it can be inferred that isoterpinolene is racsmized to the extent of 10%. This then establishes the source **of** racemization in the synthesis of $(-)$ -menthol from $(+)$ -car-3-ene. From this it also follows that optically pure (+)-isoterpinolene should have $\{\alpha\}_{n}^{25}$ + 74.1° (neat).

Racemixation **of** isoterpinolene, during its preparation froan isolimonene, can occur through two possible pathways depicted in Fig. 1. In the present context, pathway 1 is considered unimportant, since generation of 13 should be far more facile in comparison to that of ion $\underline{11}$, more so because isomerization of isolimonene (3) to isoterpinolene (4) should be a kinetically-controlled process.¹⁶ Pathway 2 envisages racemization of isoterpinolene via its 3,8-isomer (9). This implies greater racemization of $3,8-1$ somer as compared to that of isoterpinolene,

Fig. 1. Possible modes for racemization of isoterpinolene

since in isomerization of $3,8$ -isomer to isoterpinolene (4) the large excess of 9 will compete with small proportions of 15 . To check this point, the $3,8$ -isomer formed as a co-product during isomerization of isolimonene to isoterpinolene was isolated in GLC pure state and was found to have $\{\alpha\}_{D}^{25}$ + 128.9⁰ (CHCl₃). The maximum specific rotation reported for $(+)$ -mentha-3,8-diene (9) in the literature¹³ is + 159.0° (CHCl₃), from which it follows that our sample of $3,8$ -isomer must have been racemized to the extent of some 19%. This, then supports the contention that during production of (+)-isoterpinolene from (+)-isolimonene, partial racemization had occurred via pathway 2. This also implies that racemization of 9 is a slower process than its isomerization to $\frac{1}{2}$. This may be expected when one compares the structure of ions 14 and 13 .

EXPERIMENTA L

M.ps and b.ps are uncorrected. Light petroleum refers to fraction b.p. 60- 80⁰. All solvent extracts were finally washed with brine and dried (Na₂SO₄).

Precision fractionation was carried cut using Adiabatic Annular Teflon Spinning-band Distillation Unit, supplied by Nester/Faust Manufacturing Corporation, Newark, USA.

Following instruments were used for spectral/analytical data: **Schmidt +** Haensch electronic polarimeter model Polatronic 1; Perkin-Elmer model 267 Infrared Spectrophotometer; Perkin-Elmer model R32 (90 MHz) NMR spectrometer; Hewlett-Packard 5712A and 7624A Gas Chromatographs (Al columns, 180 cm x 0.6 cm; 10% Carbowax 20M on $60-80$ mesh Chromosorb W; carrier gas, H_2).

(+)-Car-3-ene used in the following experiments was 100% GLC pure, having $\{\alpha\}_{\text{D}}^{25^{\text{O}}}$ in the range + 16.98⁰ to + 17.46⁰ (reat).

$(+)-cis-Caran-3-01$ (6)

 cis -Caran-3,4-epoxide^{8c} (19.0 g) in dry ether (100 ml) was reduced with LAH (5.0g) in ether (70 ml) as reported in an earlier procedure 9 , to get crude 6 (18.0g), b.p. 90-95^o/20 mm (GLC purity, 88%). This was precision fractionated to get 100% (GLC) pure cis-caran-3-ol (6): d_A^{30} 0.9754, n_{D}^{35} 1.4705, $\{\alpha\}_{D}^{30}$ + 23.6^O(neat).

A mixture of crude LAH reduction product (16.0 g), p-nitrobenzoyl chloride (27.5 g) and dry pyridine (40 ml) was stirred at 100 $^{\circ}$ for 2 hr, and worked up to get the crude ester (31.4 g, m.p. 102-105⁰). This was repeatedly crystallized from light petroleum to a constant m.p. $(113-114^{\circ}, 24.6q)$. IR (CCl_{4}) : 1725, 1300, 1255, 1115 and 1105 cm⁻¹. ¹H-NMR (CCl₄):6 Me-C (3H, s, 0.97; 3H, s, 1.01; 3H, s, 1.55 ppm), $Ar-\underline{H}$ (4H, ABq , 8.16 ppm).

The above pure ester (24.3 g) was saponified with methanolic KOH to get d (12.Og) of 98% GLC purity. This was carefully fractionated to furnish caranol of 100% GLC purity: d_4^{ν} 0.9786, n_0^2 1.4710, α n_0^2 + 23.8 (neat).

$(-)$ -a-Methylglutaric acid from $(+)$ -isoterpinolene

 $(+)$ -Isoterpinolene {20g; GLC purity 100%, n_p³ 1.5028, d₄² 0.8494, {a}_n + 66.7⁰ (neat)} in acetone (100 ml) was exposed to ozonized oxygen (3.23g O₃ per hr; 2 1 0_3 + 0_2 /min) at -10° to -15° for 4.5 hr (+ve excess 0_3 test). The reaction mixture was diluted with cold (-5°) acetone (200 ml), and oxidized by Jones' reagent (stock soln: $CrO₃$ 133.5g, conc H₂SO₄ 115 ml and H₂O 200 ml; 60 ml, introduced dropwise with slow stirring and cooling), while maintaining the reaction

6946 **A. N. MISRA** et al.

temp at $10-20^\circ$. The reaction mixture was worked up in the usual manner to get an acid fraction as a viscous material (17.7 g). Several batches of isoterpinolene were ozonized-oxidized in this manner.

The crude acid (29.1 q) was esterified with CH₂N₂ ($\sqrt{18.0q}$, 500 ml ether) to get a distilled product (b.p. $75^{\circ}/\text{lmm}$, 19.5g) of 88% GLC purity. This was fractionated to furnish 100% GLC pure ester: n_0^{250} 1.4239, d_4^{250} 1.0535, $\{\alpha\}_{0}^{250}$ -22.5⁰(neat).

Another batch of crude acid (30.6 g) was seeded and kept at 5° for 24 hr, and the crystallized brownish white material $(12.9q, m.p. 67-71^{\circ})$ collected. This on four crystallizations from benzene gave a product $(9.9g, m.p. 81-83^{\circ})$, which was repeatedly recrystallized from ether + light netroleum to constant m.p. to get pure 10 (R=H; 7.6g), m.p. 86-88^o, (a)²⁵⁰-24.71^o(EtOH, c 5%). (Lit.¹⁷, m.p. 82.5-83^o, ${\alpha)_{n=0}^{250}}$ -21.7⁰(EtOH)). Pure acid, thus obtained, was esterified (CH₂N₂) to get 100% GLC pure ester (10, R = Me), $n_0^{25^{\circ}}$ 1.4238, $d_4^{25^{\circ}}$ 1.0500, $\{\alpha\}_{0}^{25^{\circ}}$ -24.85^o(neat).

REFERENCES AND NOTES

- 1 (a) Sukh Dev, Proceedings of 11th IUPAC International Symposium on Chemistry of Natural Products, Vol. 4, part 1, p. 433, Bulgarian Academy of Sciences, Golden Sands, 1978; (b) Sukh Dev, Proceedings of International Symp
- (a) H. Erdtman in Chemical Plant Taxonomy (Editor: T. Swain), o. 93, Academic Press, New York, 196 A.P.S. Narula and J.S. Yadav, CRC Handbook c Boca Paton, Florida, 1982.
- 3 D.V. Banthorpe, B.V. Charlwood, and M.J.O. Francis, Chem. Rev. 72 , 126 (1972).
- 4 V. Herout, Coll. Czech. Chem. Comm. 15, 381 (1950).
- 5 G. Vidmark, Acta Chem. Scand. 9, 925 (1955).
- R.T. O'Connor and L.A. Goldblatt, <u>Analyt. Chem</u>. 26, 1726 (1954).
- 7 Y.-R. Naves, Bull. Soc. Chim. Fr. 554 (1959).
- (a) B.A. Arbuzov and B.M. Mikhailov, J. Prakt. Chem. 127, Kropp, <u>J. Am. Chem. Soc</u>. 88, 4926 (1966); (c) V.S. Joshi, N Sukh Dev, <u>Tetrahedron</u> 24,⁷⁵⁸¹⁷ (1968). , 1 (1930); (b) P.J.
N.P. Damodaran and
- ⁹ K. Gollnick, S. Schroeter, G. Ohloff, G. Schade, and G.O. 687, 14 (1965). Schenck, Liebiq's Ann.
- 10 (a) G. Ohloff, K.H. Schulte-Elte and W. Giersch, Helv. Chim. Acta 48, 1665(1965); (b) W. Cocker, P.V.R. Shannon and P.A. Staniland, J. Chem. Soc.(C) 41, (1966);
(c) S.P. Acharya and H.C. Brown, <u>J. Am. Chem. Soc</u>. <u>89</u>, 1925 (1967).
- 11 (a) G. Ohloff, Tetrahedron Lett. 3795 (1965); (b) K. Gollnick and G. Schade, Tetrahedron 22, 123 (1966) .
- ¹² A.N. Misra, M.R. Sarma, R. Soman and Sukh Dev, <u>Indian Patent</u> 146086 (1979).
- 13 J.H. Brewster and H.O. Bayer, J. Org. Chem. 29, 116 (1964).
- ¹⁴ H. Horiuti, H. Otuki and O. Okuda, <u>Bull. Chem. Soc. Japan 14</u>, 501 (1939).
- ¹⁵ A.S. Narula and Sukh Dev, Tetrahedron Lett. 1733 (1969).
- 16 Under thermodynamic control the major product is p-mentha-1,3-diene, rather than isoterpinolene: A. Ferro and Y.-R. Naves, <u>Helv. Chim. Acta</u> 57, 1141 (1974).
- 17 E. Berner and R. Leonardsen, <u>Liebig's Ann</u>. 538, 1 (1939).